Заархивировано

Эта тема находится в архиве и закрыта для дальнейших ответов.

Дядюшка Ау

Нанотехнология

Рекомендуемые сообщения

НАНОТЕХНОЛОГИЯ

 

Нанотехноло́гия (греч. nanos — «карлик» + «техно» — искусство, + «логос» — учение, понятие) — междисциплинарная область фундаментальной и прикладной науки и техники, занимающаяся новаторскими методами (в сферах теоретического обоснования, экспериментальных методов исследования, анализа и синтеза, а также в области новых производств) получения новых материалов с заданными нужными свойствами.

Вообще нанотехнология ( НТ ) занимается структурами, которые не превышают значений 100 нм или меньших, и используют материалы или устройства в пределах тех размеров. Нанотехнология очень разнообразна, она распространяется в областях исследований, начиная с обычных физических устройств, включая полностью новые направления на молекулярно-атомном уровне. НТ развивает новые методы, технологии получения новых материалов с измерениями в нанометрических диапазонах (см.Нанометрология,Нанотехнология и нанометрология ) с задачами возможности непосредственного управления технологиями даже в облати атомарной.

 

В нанотехнологии применяют новейшие технологии манипулирования единичными атомами или молекулами (перемещение, перестановки, новые сочетания). Используются самые разные методы (механические, химические, электрохимические, электрические, биохимические, электроннолучевые, лазерные) для искусственной организации заданной атомарной и молекулярной структуры нанообъектов, для создания микроскопических устройств.

 

Изучение разнообразных свойств объектов и разработка технических устройств позволяет управлять элементами с размерами порядка нанометра (10-9), отсюда и происходит название «нанотехнология».

 

***

 

Нанотехнология (далее — НТ) качественно отличается от традиционных инженерных дисциплин, так как в микромасштабах привычные макроскопические технологии обращения с материей неприменимы. Взаимодействия между микроскопическими элементами в макромире ничтожны по величине, но имеют высокие удельные показатели. На микроуровне явления, пренебрежительно слабые в обычных масштабах, становятся намного более значительными и непредсказуемыми: свойства и взаимодействия отдельных атомов и молекул (или агрегатов молекул), квантовые эффекты принимают совершенно новый характер. Применение НТ позволяет искусственно связывать наночастицы с определёнными характеристиками, образующие микро- и макрообъекты, в которых определяющими становятся новые свойства и типы взаимодействия между отдельными атомами и молекулами, что определяет свойства получаемого в итоге вещества или объекта.

 

Специфические функциональные характеристики в НТ достигаются способом связи между соответствующими свойствами и изменением (например, уменьшением) структурных размеров, характерных в случаях, если размеры объектов, в крайнем случае в плоскости, не превышают значений 100 нм.

 

Определения и терминология

 

Часто применяемое определение нанотехнологии как комплекса методов работы с объектами размером менее 100 нанометров недостаточно точно описывает как сам объект, так и отличие современных нанотехнологий от традиционных и научных дисциплин.

 

Объектом нанотехнологий на микроуровне являются:

 

Наночастицы, нанопорошки — объекты, у которых три характеристических размера находятся в диапазоне до 100 нм.

Нанотрубки, нановолокна — объекты, у которых два характеристических размера находятся в диапазоне до 100 нм.

Наноплёнки — объекты, у которых один характеристический размер находится в диапазоне до 100 нм.

С другой стороны, объектом НТ могут быть и макроскопические объекты, атомарная или молекулярная структура которых создаётся благодаря контролируемому запрограммированному распределению микрочастиц на уровне отдельных атомов или молекул.

 

НТ качественно отличаются от традиционных дисциплин, поскольку в таких масштабах привычные (макроскопические) технологии при работе с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые в обычных масштабах, становятся намного более значительными и непредсказуемыми: свойства и взаимодействия отдельных атомов и молекул (или агрегатов молекул), квантовые эффекты принимают совершенно новый характер.

 

На практике НТ — это технологии производства устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и частицами, размеры которых находятся в пределах от 1 до 100 нанометровШаблон:Тчк[1] Однако сейчас нанотехнология находится в стадии интенсивного развития, и основные открытия, предсказываемые в этой области, ужé претворяются в жизнь. Проводимые исследования ужé дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.

 

При работе с размерами на атомнр-молекулярном уровне проявляются квантовые эффекты и эффекты межмолекулярных взаимодействий, такие как Ван-дер-Ваальсовы взаимодействия. НТ и, в особенности, молекулярная технология — новые области, которые в мире интенсивно исследуются. Например, развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, но при этом экономические затраты возрастают экспоненциально. Нанотехнология — очередной логический шаг развития электроники и других наукоёмких производств.

 

История

 

Учёным и технологам давно известно, что весьма мелкие частицы различных веществ обладают свойствами не адэкватными свойствам этих веществ в относительно больших объёмных фазах. Например, древне римляне применяли сверхмалые частицы золота или серебра для придания различным стекляным изделиям (бокалам) специфическую окраску. На рис.1 изготовлен кубок, имеющий рубиновую окраску. Эффект достигнут за счёт введения в материал наночастиц золота, что придавало стеклу благородные цветовые рубиновые оптические свойства. При этом можно заметить, что здесь полученный эффект нельзя отнести к осознанному явлению. Это неосознанный процесс стеклодувов, полученный в результате многовековой практики. Аналогично можно сказать о коллоидных суспензиях, когда системы с частицами менее микрона в жидкой среде предствляют лекарственные препараты и т.д.

 

9c4617b1b90b.jpg

 

Кубок Ликурга, IVвек

 

Истинным же первооткрывателем понятия НТи первое использование понятий НТ состоялось в докладе, который сделал физик Ричард Фейнман в американском Физическом Обществе, на встрече в Caltech 29 декабря 1959 года. Феёнман описал процесс, который способен управлять индивидуальными атомами и молекулами, который мог быть развит, используя один из наборов точных инструментов для создания другого набора с меньшими размерами и так далее — для управления другими пропорционально меньшими частицами. В ходе доклада Фейнман отметил, что в оценке задачи появления эффекта изменения величин различных физических состояний существует опасность НТ в вопросах влияния поверхностной напряженности создаваемых веществ и др.

 

Тем не менее, дата отсчёта времени со дня появления термина «нанотехнология» отсчитывается от заявления профессора университета Науки Токио Норайо Танигачи[2], опубликованного в 1974 году:

 

— Нанотехнология главным образом состоит из обработки, разделения, консолидации и деформации материалов одним атомом или одной молекулой.

 

В 1980-ых годах основная идея этого определения исследовалась с намного большей глубиною доктором К. Эриком Дрекслером, который развил технологическое значение явлений нано-масштаба и устройств в своих устных выступлениях и в книгах: «Прибывающая Эра Нанотехнологии и Наносистем», «Молекулярные Машины», «Производство, и Вычисление».[3] К этому времени уже появились новые материалы, микроскопическая структура которых определяла их существенно новые технологические свойства (керметы, ситаллы, композиционные материалы и композиционные покрытия, и др.). Однако началом эры нанотехнологии и нанонауки можно считать следующие события начала 1980-ых годов:

рождение науки о нанопорошках;

изобретение сканирующего туннельного микроскопа (STM).

Эти достижения, в частности, привели к открытию фуллеренов в 1986 году и углеродных нанотрубок несколько лет спустя. Затем были изучены синтез и свойства полупроводниковых нанокристаллов. Это приводило к быстрому прогрессу теоретических и прикладных исследований субмикроскопических частиц. Атомный силовой микроскоп был изобретен спустя шесть лет после того, как был создан STM.

 

В 2000 году была основана Национальная Инициатива Нанотехнологии Соединенных Штатов для координации тамошних общефедеральных научных исследований по нанотехнологииШаблон:Тчк[4]

 

Появлению понятия «нанотехнология» предшествало много сценариев в области литературы, в мире фантастики и всевозможных СМИ. В последнее время параллеллно этому развивается мощная индустрия применения нанопроцессов в получении новых материалов. Различного рода гипотезы из мира фантастики становятся реальностью. Важно своевременно выйти из состояния мистики и переключиться на реальные действия. Как говорится, «пора перейти от простого созерцания к абстрактному мышлению и от него к практике». Получаемые первые выдающиеся результаты опровергают высказывания многих скептиков и фантазёров. Не случайно на развитие научно-технической базы нанотехнологий ведущие страны мирового сообщества выделяют огромные средства.

 

В 2004 году мировые инвестиции в сферу разработки НТ почти удвоились по сравнению с 2003 годом и достигли $10 млрд. На долю частных доноров — корпораций и фондов — пришлось примерно $6.6 млрд инвестиций, на долю государственных структур — около $3.3 млрд. Мировыми лидерами по общему объему капиталовложений в этой сфере стали Япония и США. Япония увеличила затраты на разработку новых НТ на 126 % по сравнению с 2003 годом (общий объем инвестиций составил $4 млрд.), США — на 122 % ($3.4 млрд.). В настоящее время (2008 год) финансирование России на развитие нанотехнологий значительно увеличено, но по сравнению с уровнем США оно намного меньшее.

 

Фундаментальные основы

 

Методы атомно-силовой микроскопии

 

Осовным инструментм для работы в области микрочастиц на атомно-молекулярном уровне являются микроскопы. Исторически без микроскопа не возможно рассмотреть и познать микромир. Повышение разрешающей способности микроскопа и расширение знаний о элементарных частицах происходят одновременно. В настоящее время с помощью микроскопов: атомно-силового микроскопа (АСМ), cканирующего электронного микроскопа (СЭМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенона [5].

 

ab568d157c87.jpg

 

Микроигла в консолях для сканирования в микроскопах

 

При выполнении указанных действий по перемещению, соединению или разъединению атомов или молекул возникает ряд технических трудностей. Для их преодоления, например, требуется создание условий сверхвысокого вакуума (10−11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть чистой и гладкой на атомарном уровне. Поэтому применяются специальные технологии её механико-химической обработки. С целью уменьшения поверхностной диффузии осаждаемых атомов производится охлаждение подложки.

 

Наночастицы

 

Отличительная особенность новых материалов в прцессе применения нанотехнологий при их получении — это непредсказуемые получаемые физикотехническме характеристики, которые они приобретают. В связи с этим появляется возможность получения новых квантовых физикомеханических характеристик в веществах, у которых меняются обычные электронные структуры, что меняет обычную форму проявления в новых соединениях. Например, возможность уменьшения размера частицы не всегда поддаётся определению и замерам размеров элементарных частиц при помощи макро-микро измерений. Однако, это становится возможным, когда диапазон размеров наночастиц находится в зоне миллимикронов. Определенное количество физикомеханических свойств также изменяется с изменением размеров макроскопических элементов. В настоящее время новые необычные механические свойства наноматериалов — предмет исследования наномеханики. Особое место в нанотехнологиях получения новых веществ занимает применение катализаторов, влияющих на необычное поведение наноматериалов во взаимодействии с биоматериалами.

 

Частицы, размерами от 1 до 100 нанометров обычно называют наночастицами. Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, получены прозрачные керамические материалы на основе нанопорошков размерами 2—28нм cо свойствами, лучшими, чем у крона (коэффициент преломления n=2,08 вместо n=1,52) и др. Получено взаимодействие искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также проявляет небывалые ранее важные свойства.

 

Нанообъекты делятся на 3 основных класса:

 

трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д.;

двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д.;

одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

 

Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, который применяется в электронике. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных покрытий-плёнок (CVD, ALD) в виде монослоёв.

 

Самоорганизация наночастиц

 

54a7aabc0296.gif

 

Двойная спираль ДНК

 

Важнейшей задачей, стоящей перед НТ — как заставить молекулы или атомы группироваться определенным способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии — супрамолекулярная химия. Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые, организовываясь определенным способом, могут дать новые вещества. Возлагается надежда на то, что природа действительно имеет подобные системы и в ней осуществляются подобные процессы. Так, известны биополимеры, способные организовываться в особые структуры. Один из примеров — белки, которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы — структуры, включающие несколько молекул протеинов (белков). Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК. Берется комплементарная ДНК, к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- — условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

 

Атомно-молекулярная нанотехнология

 

Основная статья: Атомно-молекулярная нанотехнология

 

Молекулярная НТ, иногда называемая молекулярным производством, рассмативает вопросы проектирования наносистем (машин), работающих и управляющих наночастицами на атомно-молекулярном уровне. Это особенно важно для создания машин, способных производить другие машины, позволяющие воспроизводить нужную последующую систему, более приспособленную к новым требованиям. Производство должно размежеваться от обычных технологий, например, изготовления углеродных наноматериалов типа фуллеренов и др.

 

c9f4f4d2471e.jpg

 

Наноединица сервисного тумана

 

Проблема образования агломератов

 

Применение наночастиц и наноматериалов становятся во многих отраслях производства (керамика, металлургия) всё более эффективным. В настоящее время исследование наноматериалов стало одним из главных направлений работы многих научных коллективов.

 

Частицы малых размеров (атомы, молекулы и наночастицы, с размероми несколько нанометров, обладают склонностью к агрегации и слипанию, что мешает их использованию. Они часто образуют агломераты под действием сил поверхностного натяжения, электростатического взаимодействия (электризация). Возможный путь решения проблемы — использование веществ—дисперсантов, таких как цитрат аммония (водный раствор), имидазолин, олеиновый спирт (нерастворимых в воде). Их можно добавлять в среду, содержащую наночастицы. Подробнее см. "Organic Additives And Ceramic Processing, ", D. J. Shanefield, Kluwer Academic Publ., Boston (англ.).

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Текущие вопросы исследований

 

Наноматериалы

 

В плане первоочередных задач разработок являются исследования в области наночастиц, имеющих уникальные свойства и соизмеримы при помощи достигнутых средств измерения:

 

Интерфейс и коллоидная наука — ветвь химии, имеющей дело с коллоидами, гетерогенными системами, состоящих из механической смеси микрочастиц в интервале 1 нм — 1000 нм (интервал наночастиц 1 нм — 100 нм), расспределённых в непрерывной среде.

Интерфейс и коллоидная наука имеет свои напрвления в химической промышленности, фармацевтических препаратах, биотехнологии, керамике, полезных ископаемых, нанотехнологии, а также в других областях.[6][7]

 

Характер будущих исследований

 

Цель будущих исследований

 

Целью будущих исследований — это стремление создания меньших компонентов и их объединение в более сложные соединения. Нанотехнология, например, ДНК использует специфику растяжения «мышц» Уотсона, чтобы строить чёткие структуры из ДНК и других нуклеиновых кислот. Подходы начиная от классического химического синтеза к стремлению проектирования молекулы с чёткой формой (например, пептид решают много сложнейшмх проблем.[8]).

 

Если более шире, то в молекулярной технологии стремятся использовать понятия надмолекулярной химии, и молекулярного саморегулирования. Например, необходимо заставлять компоненты единственной молекулы автоматически встраиваться в определённом полезном сосочетании наночастиц объекта.

 

Переход от большего к меньшему

 

1a9d54cf7049.jpg

 

Рис.2,Получение размеров биологических наноструктур сверху-вниз и снизу-вверх

 

Из приведенного выше определения НТ не является совершенно новым явлением. Наночастицы известны давно и ими, например,занимаются специалисты коллоидной химии. Но более научнообоснованные и точные определения не возможны без доступа ко всем компонентам наночастиц. И рассматривать вопросы наномолекулярного синтеза следут производить в направлении вектора развития НТ «снизу-вверх», когда нанообразования создавались бы на базе синтеза атомов или молекул в более крупные и сложные структуры. При этом сохраняя данный подход и развивая в дальнейшем нанотехнологию принимается принцип, объединяющий разные методики нанотехнологий, с ограничением и сакращением различных характкристик с вектором развития НТ «сверху-вниз» — принцип уменьшения размеров от макро через микро до наноразмеров. Когда стремишься создать меньшие устройства при использовании больших, чтобы их использовать в нужных решениях. На приере (см.Рис.2) показаны типичные размеры нанобилогических объектов, создаваемые по принципам: «сверху-вниз» и «снизу-вверх».

 

Много технологий начиная от обычных методов применения кремния как твердого тела в настоящее время при изготовлении микропроцессоров теперь способны выполнять функции, присущие элементам меньших чем 100 нанометров, благодаря новым нанотехнологиям. Гигантские накопители на жестких дисках на основе магнитосопротивления уже заменяются мологабиритными устройствами и при изготовлении и работе используются нанотехнологии от большего к меньшему с использованием метода смещение атомного слоя (ALD). Питер Грзаджк 0кснберг и Альберт Ферт получили Нобелевскую премию по Физике за открытия Гигантского магнитосопротивления и вкладов в область спинтронники в 2007 году.

 

Методы твердого тела могут также использоваться при создании устройств, известные как nanoelectromechanical системы или NEMS, которые связаны с микроэлектромеханическими системами или MEMS.

 

a2ff088973fb.jpg

 

Субмикронная литография

 

Разрешение современных атомных силовых микроскопов позволяют внести химикат на поверхность в желательном образце в процессе, названном Субмикронная литография Ручки падения (ТВЕРДОСТЬ ПО ВИККЕРСУ)(т.е. техника литографии исследования просмотра, где используется атомный наконечник микроскопа силы, чтобы передать молекулы поверхности через растворитель мениск. Эта техника позволяет копирование поверхности с размерами в до 100 нм). Это сочетается с нарастаюшим большим внедрением субмикронной литографии. Например, сосредоточенные лучи иона могут непосредственно удалить материал, или внести материал, когда подходящий предшественник газ применен одновременно. Например, эта техника используется для создания 100 разновидностей нитрометана — материала для анализа в микроскопии взаимодейстаия электрона.[9]

 

Достижения нанотехнологии в настоящее время

 

Наноматериалы

 

c338ba66d12b.jpg

 

Устройство передачи энергии от nano-тонких слоев квантовых колодцев к нанокристаллам.

 

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих:

Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и заканчиваются обычно полусферической головкой.

Фуллерены — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.

Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах.

Наноаккумуляторы — в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов. Аккумуляторы с Li4Ti5O12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане. В марте 2006 Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля. В мае 2006 успешно завершились испытания автомобильных наноаккумуляторов. В июле 2006 Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей.

 

Наномедицина и химическая промышленность

 

Направление в современной медицине основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

 

ДНК — используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

 

Компьютеры и микроэлектроника

 

Центральные процессоры — 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора, содержащего наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel, компания AMD, также давно использует для производства своих процессоров НТ процессы, разработанные совместно с компанией IBM. Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI, препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 45 нм и опытные образцы на 32 нм.

Жесткие диски — в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта, позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.

 

Атомно-силовой микроскоп — Сканирующий электронный микроскоп — Флюоресцентный наноскоп.

Атомно-силовой микроскоп — микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер Ваальса. Но при использованиии специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. В отличие от сканирующего туннельного микроскопа cканирующий атомно-силовой микроскоп, может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно-силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали. Сканирующий атомно-силовой микроскоп применяется для фотографированя профиля поверхности и для изменения её рельефа, а также для манипулирования: перемещения, добавления, удаления микроэлементов (атомов и молекул) на поверхности объекта.

 

Сканирующий электронный микроскоп — (СЭМ) — микроскоп, отличающиийся возможностью получать сильно увеличенное изображение объектов, используя для их освещения электроны.[10]Электрон обладая свойствами не только частицы, но и волны, позволяет использовать, как опорное электронное излучение в микроскопии. Длина волны электронного излучения зависит от его энергии, а энергия электрона равна E = Ve, где V — разность потенциалов, проходимая электроном, e — заряд электрона. Длины волн электронного излучения при прохождении разности потенциалов 200 000 В составляет разрешение порядка 0,1 нанометра.

 

Флюоресцентный наноскоп — (микроскоп) (греч. μικρός — маленький и σκοπέω — смотрю) — лабораторная оптическая система для получения увеличенных изображений малых объектов с целью рассмотрения, изучения и применения на практике с разрешающей способностью 10-30 нм, использующий эффект флюоресцентии - свечения покрашенных микроэлементов под действием лазерного облучения живых клеток организма и микроэлементов с выдачей оцифрованных цветных стереизображений 3D на экране монитора.

Антенна-осциллятор — 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

 

Плазмоны — коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале 2000-го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии — наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

 

Робототехника

 

Молекулярные роторы — синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Нанороботы(на данный момент (2009) фантастика) — роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер.

Молекулярные пропеллеры — наноразмерные молекулы в форме винта, способные совершать вращательные движения благодаря своей специальной форме, аналогичной форме макроскопического винта.

С 2006 года в рамках проекта RoboCup (по футболу среди роботов) появилась номинация «Nanogram Competition», в которой игровое поле представляет из себя квадрат со стороной 2.5 мм. Максимальный размер игрока ограничен 300 мкм.

 

Концептуальные устройства

 

Nokia Morph - проект сотового телефона будущего, созданный совместно научно-исследовательским подразделением Nokia и Кембриджским университетом на основе использования нанотехнологических материалов.

 

Востребованность и значение нанотехнологии

 

На 21 августа, 2008, согласно проекту на новые НТ оценивается более чем в 800 идентифицированных изготовителями нанотехнологических продуктов, которые достижими с новыми качествами, удивляющими рынок в темпе 3-4 новых вида нанопродукто в неделю. Большинство заявок ограничено использованием первого поколения пассивных наноматериалов, которые включют:

 

диоксид титана в солнцезащитный крем;

косметику и немного продовольственных продуктов;

углерод allotropes имел обыкновение производить ленту геккона;

серебро в упаковке пищи, одежде, дезинфицирующих средствах и бытовой технике;

цинковая окись в солнцезащитных кремах и косметике, поверхностных покрытиях, красках и наружных лаков мебели; и др.

Дальнейшие заявки, которые требуют соглосования и договоренности о видах компонентов. Их ждут далльнейшие исследования.

 

Например, следует назвать полученный продукт как Нано-мембраны, которые являются портативными и легко-очищаемыми системами, очищающие, детоксифицирующие и опресняющие воду. Это означает, что страны третьего мира смогли получить чистую воду, решая много связанных с водой проблем здоровья (цитата необходимая).

 

Или нанотехнология в оптике, когда наносреда из электромагнитно-двойных пар золотых точек в линзах вызывает новый эффект прохождения электромагнитных волн, например, в нанооптике.

 

Нанооптика

 

80d6a9c7fbeb.jpg

 

Наносреда из электромагнитно-двойных пар золотых точек

 

В наносозданной среде получен эффект взамодействия электромагнитных волн с сильным магнитным ответом в зоне видимого спектра электромагнитных волн («видимых-легких частот»), включая полосу с отрицательным магнетизмом. Среда сделана из электромагнитночувствительных двойных пар золотых точек с геометрией и симметрией, тщательно разработанной на нанометрическом уровне. Возникающий магнитный ответ получен в зоне частот 600-700 ТГц (1012 Гц), в диапазоне зелёный — часть фиолетового цветов получается благодаря возбуждению антисимметричного плазменного резонанса. Высокочастотная проходимость проявляет себя качественно с новым эффектом оптического взаимодействия в данных условиях применения нанотехнологий. Это впервые показывает возможность применения электромагнетизма в зоне видимых частот и прокладывает путь в видимой оптике для получения оптической системы с лучшими показателями преломления, прозрачности к определённым лучам света.[11]

 

Прогнозы и цифры развития НТ

 

3504c9f45e88.jpg

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Значения и управление нанотехнологиями

 

Не исключены опасности, которые могут возникнуть с развитием нанотехнологии. Центр Ответственной Нанотехнологии сообщает, что новые разработки оружия массового поражения можно обезвредить достаточно быстро при использовании правительствами соответствующих программ нанотехнологий.[20]

 

Нанотехнология и общество

 

Прогресс и быстрое развитие в области нанотехнологий вызвал определенный общественный резонанс.

 

Отношение общества к нанотехнологиям изучалось ВЦИОМ и европейской службой "Евробарометр".

 

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью[26], а также из-за опасений связанных с токсичностью наноматериалов.

 

Мировое сообщества и развитие нанотехнологий

 

C 2005 года функционирует организованная CRN международная рабочая группа, изучающая социальные последствия развития нанотехнологий.

 

В октябре 2006 года Международным Советом по нанотехнологиям выпущена обзорная статья, в которой говорилось о необходимости ограничения распространения информации по нанотехнологическим исследованиям в целях безопасности.

 

Организация «Гринпис» требует полного запрета исследований в области нанотехнологий.

 

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA.

 

Российское общество и развитие нанотехнологий

 

26 апреля 2007 года Президент России Владимир Путин в послании Федеральному Собранию назвал нанотехнологии «наиболее приоритетным направлением развития науки и техники».

 

По его мнению, для большинства россиян нанотехнологии сегодня — «некая абстракция вроде атомной энергии в 30-е годы». Приставка «нано-», по мнению первого вице-премьера Сергея Иванова, все чаще используется «ушлыми торговцами» в рекламных целях. О риске использования «популярной» терминологии для получения дополнительных финансовых средств некоторыми компаниями также говорил мининстр образования и науки А. Фурсенко.

 

О необходимости развития нанотехнологий заявляет ряд российских общественных организаций.

 

По сообщениям СМИ, представители Российского трансгуманистического движения акцентировали внимание на развитии нанотехнологического производства на круглом столе «Влияние науки на политическую ситуацию в России. Взгляд в будущее», состоявшегося 21 марта 2007 года в Государственной Думе РФ.

 

8 октября 2008 года было создано "Нанотехнологическое общество России", в задачи которого входит "просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны"

 

19e6a6f630d5.gif

 

Нанотехнологии активно внедряются в быт простых россиян

 

Федеральным законом РФ № 139-ФЗ от 19 июля 2007 года «для реализации государственной политики в сфере НТ, развития инновационной инфраструктуры в сфере НТ, реализации проектов создания перспективных нанотехнологий и наноиндустрии» была учреждена «Российская корпорация нанотехнологий». В 2007 году правительство России выделило на деятельность этой корпорации 130 млрд рублей.

 

Одновременно НТ активно используются для политического PR, как оправдание выделения громадных бюджетных средств на невнятные цели. Проводятся параллели между советским атомным и российским НТ проектами. Обоснованность этих параллелей вызывает серьёзные сомнения.

 

Тем не менее в настоящее время в России отмечается всё возрастающее внимаие НТ и вопросам НТ придают большое значение в развитии академических дисциплин и программам образования, но только на уровне понимания.

 

Думается, что в России придёт время, когда как в известном произведении русского писателя Н. Лескова «Левша» (1881 год) повторится 1881 год:

 

Если бы, — говорит, — был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, — говорит, — увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал Н. Лесков «Левша».

 

Микроскопопы такие уже сделаны и что всё же появятся в России новые «Левши», но не с разговорами, а кропотливыми делами.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Нано-картинки: реалии и фантазии

 

ba153375539f.gif

 

Работа предполагаемого редуктора, построенного из атомов и молекул. Слипнутся ли шарики, нужна ли водная среда как в живом организме, и т.д. и т.п.

 

4d17ad51955e.jpg

 

Шестерни молекулярного размера на основе нанотрубок

 

 

6b7bab65260f.jpg

 

TITLE: Chisai Benjo

Description: An effective method of dealing with defects is to find a collection site.

Magnification: ~15,000X

Instrument: SII NanoTechnology Inc. / SMI2050MS2

 

89cffb5b6516.jpg

 

Оборудование нанотехнологий

 

7109f4ac2786.jpg

 

003d1afb87d6.jpg

 

186600f0e0fd.jpg

 

0caf2143761e.jpg

 

474b43610df1.jpg

 

987fe6583745.jpg

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

618bd8fde620.jpg

 

Упаковка нано-молекулы

 

fa8fe6175bf2.jpg

 

Шаровая молния в ловушке

 

bc338083f472.jpg

 

Голубая ваза

 

87f1da171832.jpg

 

Красавица

 

097827cbd392.jpg

 

Нано-таможня

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Словарь терминов

 

Объемная технология (bulk) - современные технологии, оперирующие многими молекулами вещества, не учитывая при этом каждую молекулу.

В такой технологии основными строительными "кирпичиками" являются нерегулярные блоки, состоящие из неизвестного наперед количества молекул.

 

Молекулярная технология - технология, позволяющая создавать твердые тела, устройства, органические и неорганические вещества молекула за молекулой. В такой технологии основными строительными "кирпичиками" являются отдельные молекулы или атомы.

 

Нано - 9Е-10 (10 в минус 9-той степени), приставка для обозначения порядка величины.

 

Нанометр - одна миллионная доля миллиметра.

 

Нанотехнология - отрасль молекулярной технологии, ориентированная на получение устройств, роботов, веществ с наперед заданной молекулярной структурой, производя их молекула за молекулой.

 

Наномедицина - совокупность профилактических, лечебных, хирургических и восстановительных средств с молекулярной избирательностью и высокой степенью опреативного вмешательства.

 

Наноробот (нанобот) - программно управляемое устройство

нанометрических размеров, созданное посредством молекулярной технологии, способное к легкому управлению и обладающее достаточной автономностью.

 

Нанокомпьютер - квантовый или механический компьютер нанометрических размеров с высокой производительностью.

 

Ассемблер - полностью автоматизированный нанобот, включающий в себя мощный нанокомпьютер, комплекс наноманипуляторов и наносенсоров, способный к саморепликации (саморазмножению) и обладающий возможностью манипулировать отдельными атомами или молекулами. Такие роботы способны производить объемные вещи по наперед заданному набору атомных координат или анализировать структуру уже готовых вещей, чтобы затем делать их копии.

 

Дизассемблер - робот-ассемблер, направленный на снятие молекулярной структуры вещества путем его анализа молекула за молекулой.

 

Нанотрубка - трубка нанометрических размеров, состоящая из отдельных атомов углерода и имеющая искусственную структуру. Предназначаются для коммуникаций, передачи энергии и сигналов, а также построения новых материалов на базе углерода.

 

Нанолитография – создание «правильных» групп атомов и молекул на подложке из обычного вещества. Это шаг к разработке и конструированию первых деталей наномашин, в том числе ассемблера.

 

Сканирующий туннельный микроскоп (STL) - предназначен для работы и с нанолитографией.

 

 

73dfc91082a2.jpg

 

Механические нанокомпьютеры, имплантированные в мозг человека, смогут намного увеличить скорость мыслительных процессов

 

5e5afd700928.jpg

 

Механические парикмахеры, создающие динамическую прическу (так называемые косметические нанороботы)

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Еще рисунки из Наномира

 

5b6dddb384a9.jpg

 

Механический фагоцит - составляющая часть искусственной механизированной крови. Небольшая концентрация этих устройств способна полностью уничтожать бактерии, вирусы и микропаразиты размером не более 2 мкм, что позволит быстро очистить кровь животного или человека от заражения. Отдельно могут составлять искусственный иммунитет, что позволит увеличить сопротивляемость организма болезням.

 

bc2472e51848.gif

 

ДНК анализатор - способен на нуклеотидном уровне анализировать ДНК, вырезать поврежденные участки и заменять их на работоспособные нуклеотиды. Позволит корректировать и устранять различные дефекты ДНК, ликвидировать генетические болезни и в будущем изменять конфигурацию ДНК по желанию пациента.

 

c9a75223731f.gif

 

Искусственная ремонтная клетка - способна на клеточном уровне устранять "неисправности" клеток, в том числе их восстановление после крионирования. Имеет 1000 биоманипуляторов, управляемых с помощью нанокомпьютера. В перспективе развития - один из важнейших инструментов наномедицины.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

прикольно, бум надеяться, что на нашем веку реализуют-таки, особенно наномедицину. Компы же с 80 годов быстро развились)

 

ТОчнее с изобретения транзистора, конечно же. То бишь 60 лет почти... Уточнила в поисковике, получается 1947 год - был протестирован первый транзистор. Но если учесть уровень науки сегодня, то не исключено, что застанем расцвет нанотехнологий)

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

О нанотехнологиях кстати я еще мечтал, когда и понятия такого не было, начитавшись фантастики думал, а что если механизмы и схемы делать в таком мизерном масштабе, что молекулы будут выполнять роль шестеренок и электронных ключей. Ан вон оно как вышло...

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Дядюшка Ау

интересно на каком уровне развития находятся эти технологии? Читала, но не шибко поняла, да и ты, раз интересуешься, скорее ответить сможешь)

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Можно сказать мы пользуемся чужими наработками. Нано ограничивается порогом в 100 нан. Так вот когда в Европах и Азиях уже вышли за 45 нанорубеж, мы покупаем уже старые технологии на уровне 70-80 нан и отчитываемся президенту, что мы мол достигли успехов в нане :) А по сути мы отстали, это все не наше.. Вспомни анекдот про "самые большие микросхемы в мире" и ты поймешь ситуацию с отечественным нано. По сути мы просто купили разработки у китаез или япошек...

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Нанопейзажи - шикарны!

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты
Можно сказать мы пользуемся чужими наработками. Нано ограничивается порогом в 100 нан. Так вот когда в Европах и Азиях уже вышли за 45 нанорубеж, мы покупаем уже старые технологии на уровне 70-80 нан и отчитываемся президенту, что мы мол достигли успехов в нане :) А по сути мы отстали, это все не наше.. Вспомни анекдот про "самые большие микросхемы в мире" и ты поймешь ситуацию с отечественным нано. По сути мы просто купили разработки у китаез или япошек...

 

Ну это и понятно - наука требует значительного финансирования. А что-то уже на практике применяется? Пусть не в России, а в мире. Помимо компов.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты
Пусть не в России, а в мире. Помимо компов.

Все чаще слышно о нанопокрытиях для разных поверхностей(ткань, стекло и т.д.), которые отталкивают жидкость. Вода по ним катается, как ртуть. Такие покрытия уже в продаже.

Также умеют делать всякие углеродные трубки, кольца, иглы и другие ненужные в быту вещи.

Сколько не пытался найти информацию о первых нанороботах, ничего не нашел. Только разработки.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="
type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object>&hl=ru&fs=1">
name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="
type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object>&hl=ru&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344">

Конечно может баян. На видео жидкость из ферромагнитных частиц наноразмера.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

БАТАРЕЙКИ ИЗ БУМАГИ

 

Ученые из Стэнфордского университета разработали новый метод аккумулирования энергии, использовав для этого простую бумагу, покрытую красителем, в котором содержатся углеродные нанотрубки и серебряные нанопровода. Благодаря своей одномерной структуре эти наноматериалы являются отличными проводниками электричества и прекрасными компонентами для создания сверхлегких и гибких аккумуляторов и конденсаторов.

 

"Популярная механика", май 2010

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Нанотехнология у нас в надежных руках... Беспокоится неочем...

250px-Nanobolt.jpg

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Разработку новосибирских ученых — прибор, способный расшифровать геном человека — возможно, включат в государственную программу нанотехнологий. И если проект получит зеленый свет, уже в ближайшем будущем такие аппараты появятся в поликлиниках крупных медицинских центров страны.

 

Кто рожден лириком, а кто физиком? Вся эта информация сокрыта в геноме человека. Расшифровать как можно быстрее и как можно дешевле — такую задачу поставили сибирские ученые. Сразу четыре института сибирского отделения академии наук создают уникальный прибор — секвенатор ДНК. Проще говоря, аппарат, который расшифрует все, что закодировано в генах.

 

http://news.rambler.ru/Russia/head/6215715/

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="
type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object>&hl=ru&fs=1">
name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="
type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object>&hl=ru&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344">

http://www.rusnano.com/Post.aspx/Show/26242

Реклама открывающегося в Рыбинске завода, по производству металорежущего инструмента с нанопокрытием.

Надеюсь сверла будут лучше рекламы.

 

На www.rusnano.com можно посмотреть карту с производствами, которые скоро откроют.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты

Одно из наиболее интересных направлений исследований нанотехнологии, что произведет переворот в компьютерной технике и не только.

Мемристор (от английского memory+resistor) – это резистор, сопротивление которого увеличивается при увеличении тока, пропускаемого через него, т.е., резистор, который «помнит» величину пропускаемого тока. Исследователи HP Labs продемонстрировали способ управления мемристорным материалом. Они надеятся на быструю разработку на основе мемристора коммерческого прототипа резисторной оперативной памяти – RRAM (resistive random-access memory) [1].

 

Разрабатываемый в HP Labs мемристор – это двухконтактный прибор типа «сэндвич», состоящий из двух взаимно перпендикулярных металлических электродов (crossbars) и двухслойкой из двуокиси титана. Один слой – диоксид титана, «легированный» кислородными вакансиями, которые делают его полупроводником, и второй слой – чистый изолирующий диоксид титана. Когда один из слоев диоксида титана находится в состоянии изолятора, регистрируется состояние «off». При приложении напряжения кислородные вакансии из «легированного» слоя дрейфуют в слой «чистого» оксида, вызывая в нем проводимость и, таким образом, переключатель переходит в состояние «on». Подобным образом, изменяя направление тока, можно заставить кислородные вакансии мигрировать в обратном направлении, возвращая переключатель в состояние «off». Преимущество мемристора в том, что состояние сохраняется до тех пор, пока не приложено обратное напряжение, т.е., память на мемристрах является энергонезависимой. На сегодня в HP Labs достигнуто время переключения прибора 50 нс.

 

Преимущество мемристора в том, что состояние сохраняется до тех пор, пока не приложено обратное напряжение, т.е., память на мемристрах является энергонезависимой. На сегодня в HP Labs достигнуто время переключения прибора 50 нс.

post-23688-1273074266_thumb.jpg

Мемристор

 

На рисунке – AFM-изображение прототипа мемристора, изготовленного в HP Labs – это сэндвич из 17 нанопроводников (верхний электрод) и одного поперечного нанопроводника (нижний электрод), разделенных двухслойкой из оксида титана.

 

Исследователи разработали решение для выполнения детального исследования взаимодействий между слоями мемристора, размещая экспериментальный образец на чипе горизонтально, а не вертикально. «Мы использовали монокристаллический оксид титана, чтобы встроить мемристор в полупроводниковый прибор с вертикальной структурой», — сказал исследователь HP Labs Джош Янг (Josh Yang). Таким путем мы можем исследовать взаимодействие слоев отдельно и определить какой их них оказал влияние на свойства мемристора.

 

HP Labs изготовила горизонтальные устройства в нескольких конфигурациях для полного описания свойств мемристора. Горизонтальные устройства также позволяют оценить электрические параметры каждого слоя в различных условиях, создавая базу знаний для постройки основанных на мемристорах КМОП-полупроводников. «Теперь мы знаем как проектировать новые устройства, имеющие особые электрические характеристики», — сказал Янг. «Например, для выключения мемристора положительным напряжением слой оксида титана должен располагаться сверху. Для включения мемристора этим же напряжением слои нужно поменять местами».

 

Знания о том, что кислородные вакансии изменяют сопротивление оксида титана, еще недостаточно для управления переключением мемристора. Исследователи первоначально предполагали, что вакансии воздействуют на весь массив оксида, теперь же они знают, что реально события разыгрываются на интефейсе между оксидом и металлическим электродом. Мемристорный материал работает скорее как барьер Шоттки.

 

Этот новый схемный элемент поможет решить многие сегодняшние проблемы микроэлектроники, в частности, проблему дальнейшего масштабирования. Мемристоры можно делать очень маленькими, не встречаясь с проблемой отвода тепла, возникшей при масштабировании сегодняшнего транзистора. HP уже испытывает мемристорный материал в конструкции, содержащей до 100 млрд. «кроссбаров» на кв.см. [2]

 

HP Labs в настоящее время работает над первым прототипом чипа, чтобы можно было продемонстрировать способность мемристоров выполнять различные схемные функции. Исследователи планируют изготовить резисторную оперативную память – RRAM. HP Labs планирует продемонстрировать прототип RRAM в 2009 г.

 

Утверждается, что массив из мемристоров с настраиваемыми сопротивлениями может обучаться подобно человеческому мозгу. В мозге синапс всякий раз усиливается, когда по нему протекает ток. Таким же образом понижается сопротивление, когда по мемристору протекает ток. Такие нейронные сети могут учиться приспосабливаться, пуская ток любом необходимом направлении.

 

«Создание RRAM-памяти — наша ближайшая цель, но в более отдаленной перспективе мы хотим преобразовывать вычисления с помощью адаптивных контролирующих контуров с функцией обучения», — говорит Стюарт. Аналоговые цепи, использующие электронный синапс, потребуют 5 лет исследований.

 

Кроме того, исследователи планируют построить на базе мемристоров и аналоговые схемы. На разработку и изготовление первого прототипа аналоговой схемы на мемристерах, по оценкам, потребуется 5 лет, а на запуск массового производства – 10 лет.

http://www.nanonewsnet.ru/articles/2008/vp...story-v-hp-labs

 

Первый AI уже близко.

HP Labs планирует продемонстрировать прототип RRAM в 2009 г.

Статья немного старая. В этом году показали первый прототип.

Поделиться сообщением


Ссылка на сообщение
Поделиться на другие сайты